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2n  21,382,107,400,956,509,.,019 is never a prime -

Joel Spencer

The Rand Corporation, Santa Monica, California

The sequence 2 - a for fixed a has been'studied by

many mathematicians. For a = +1, those 2 n  1 which are

primes are called Mersenne primes. For a -1, the primes

of the form 2n + I are called Fermat primes. Clearly if I
a is even the only possible prime woald be 2. In this note,

I find an odd a such that 2 n - a is never a prime.

If p is a prime set x(p) minimal t 5 0: 2t = (mod p).

So given x(p) we must have p,2x (p ) - I and pj2t . i for

1 < t < p. If x(p) is even then p12  - implies

x(P)

p12 ' + 1. It is not difficult to show x(p) 2 f ff

p i1 + 1. We get the table: Z
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x(p) 2x(p)/2 + I p

2 3 3

4 5 5

8 17 17

16 257 257

32 65537 65537

64 4,294,967,297 641,6700417

The last row gives the factorization of 232 + I first found

by Fermat. Now the equation 2n  a(p) will eithier have no

solutions or the solution set n b(x(p)) where 2b a(p).

Thus if a = -1(3), 2 a(3) iff n = 1(2). We have
-1 a 2 x(p)/ 2 (p) whenever x(p) is even. Set

a -1 [3,5,17,257,65537,641].

Then

21n M a (3) iff n 1( 2)

2n  a (5) iff n 2(4)

n
2 a (17) iff n 4(8)

2n a (257) iff n 8(6)

2 s a(65537) iff n = 16(32)

2" a '641) iff n = 32(64)

if

a =+1[67004171

2' a(6700417) iff n 0(64).
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By the Chinese Remainder Theorem we m~y solve for a modulo

3.5.17.257.65537.641.6700417. A solution is given as the

title. Note all n's satisfy exactly one of the consequencesnIgiven so all 2n - a are divisible by 3,5,17,257,65537, or

6700417. One can easily check that 12n  al > 1015 for

all n so it never equals one of these primes.

The following result is due to 0. 144. f
Corollary: There exist infinitely many primes p such that

2 - p is never a prime.

Proof: If a = a 0 (mod A) when a is given in the title

and A is the product of the primes then 2 - a is always

divisible by one of the seven primes. By Dirichler's

Theorem that residue class contains an infinite number of

primes. Taking a negative and large 2n - a never equals

any of the primes so is never a prime.
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